Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar.

Identifieur interne : 002B41 ( Main/Exploration ); précédent : 002B40; suivant : 002B42

Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar.

Auteurs : Tingting Li [République populaire de Chine] ; Jinhui Chen ; Shuai Qiu ; Yanjuan Zhang ; Pengkai Wang ; Liwei Yang ; Ye Lu ; Jisen Shi

Source :

RBID : pubmed:22952685

Descripteurs français

English descriptors

Abstract

BACKGROUND

To date, several studies have indicated a major role for microRNAs (miRNAs) in regulating plant development, but miRNA-mediated regulation of the developing somatic embryo is poorly understood, especially during early stages of somatic embryogenesis in hardwood plants. In this study, Solexa sequencing and miRNA microfluidic chips were used to discover conserved and species-specific miRNAs during somatic embryogenesis of hybrid yellow poplar (Liriodendron tulipifera×L. chinense).

METHODOLOGY/PRINCIPAL FINDINGS

A total of 17,214,153 reads representing 7,421,623 distinct sequences were obtained from a short RNA library generated from small RNAs extracted from all stages of somatic embryos. Through a combination of deep sequencing and bioinformatic analyses, we discovered 83 sequences with perfect matches to known miRNAs from 33 conserved miRNA families and 273 species-specific candidate miRNAs. MicroRNA microarray results demonstrated that many conserved and species-specific miRNAs were expressed in hybrid yellow poplar embryos. In addition, the microarray also detected another 149 potential miRNAs, belonging to 29 conserved families, which were not discovered by deep sequencing analysis. The biological processes and molecular functions of the targets of these miRNAs were predicted by carrying out BLAST search against Arabidopsis thaliana GenBank sequences and then analyzing the results with Gene Ontology.

CONCLUSIONS

Solexa sequencing and microarray hybridization were used to discover 232 candidate conserved miRNAs from 61 miRNA families and 273 candidate species-specific miRNAs in hybrid yellow poplar. In these predicted miRNAs, 64 conserved miRNAs and 177 species-specific miRNAs were detected by both sequencing and microarray hybridization. Our results suggest that miRNAs have wide-ranging characteristics and important roles during all stages of somatic embryogenesis in this economically important species.


DOI: 10.1371/journal.pone.0043451
PubMed: 22952685
PubMed Central: PMC3430688


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar.</title>
<author>
<name sortKey="Li, Tingting" sort="Li, Tingting" uniqKey="Li T" first="Tingting" last="Li">Tingting Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
</author>
<author>
<name sortKey="Qiu, Shuai" sort="Qiu, Shuai" uniqKey="Qiu S" first="Shuai" last="Qiu">Shuai Qiu</name>
</author>
<author>
<name sortKey="Zhang, Yanjuan" sort="Zhang, Yanjuan" uniqKey="Zhang Y" first="Yanjuan" last="Zhang">Yanjuan Zhang</name>
</author>
<author>
<name sortKey="Wang, Pengkai" sort="Wang, Pengkai" uniqKey="Wang P" first="Pengkai" last="Wang">Pengkai Wang</name>
</author>
<author>
<name sortKey="Yang, Liwei" sort="Yang, Liwei" uniqKey="Yang L" first="Liwei" last="Yang">Liwei Yang</name>
</author>
<author>
<name sortKey="Lu, Ye" sort="Lu, Ye" uniqKey="Lu Y" first="Ye" last="Lu">Ye Lu</name>
</author>
<author>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22952685</idno>
<idno type="pmid">22952685</idno>
<idno type="doi">10.1371/journal.pone.0043451</idno>
<idno type="pmc">PMC3430688</idno>
<idno type="wicri:Area/Main/Corpus">002899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002899</idno>
<idno type="wicri:Area/Main/Curation">002899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002899</idno>
<idno type="wicri:Area/Main/Exploration">002899</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar.</title>
<author>
<name sortKey="Li, Tingting" sort="Li, Tingting" uniqKey="Li T" first="Tingting" last="Li">Tingting Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
</author>
<author>
<name sortKey="Qiu, Shuai" sort="Qiu, Shuai" uniqKey="Qiu S" first="Shuai" last="Qiu">Shuai Qiu</name>
</author>
<author>
<name sortKey="Zhang, Yanjuan" sort="Zhang, Yanjuan" uniqKey="Zhang Y" first="Yanjuan" last="Zhang">Yanjuan Zhang</name>
</author>
<author>
<name sortKey="Wang, Pengkai" sort="Wang, Pengkai" uniqKey="Wang P" first="Pengkai" last="Wang">Pengkai Wang</name>
</author>
<author>
<name sortKey="Yang, Liwei" sort="Yang, Liwei" uniqKey="Yang L" first="Liwei" last="Yang">Liwei Yang</name>
</author>
<author>
<name sortKey="Lu, Ye" sort="Lu, Ye" uniqKey="Lu Y" first="Ye" last="Lu">Ye Lu</name>
</author>
<author>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (methods)</term>
<term>Liriodendron (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Nucleic Acid Conformation (MeSH)</term>
<term>Nucleic Acid Hybridization (methods)</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Plant Development (MeSH)</term>
<term>Plants (genetics)</term>
<term>RNA, Plant (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Arabidopsis (génétique)</term>
<term>Conformation d'acide nucléique (MeSH)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Développement des plantes (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Hybridation d'acides nucléiques (méthodes)</term>
<term>Liriodendron (génétique)</term>
<term>Plantes (génétique)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (méthodes)</term>
<term>Séquençage par oligonucléotides en batterie (méthodes)</term>
<term>Test de complémentation (MeSH)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Liriodendron</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Arabidopsis</term>
<term>Liriodendron</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Hybridation d'acides nucléiques</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Conserved Sequence</term>
<term>Crosses, Genetic</term>
<term>Genetic Complementation Test</term>
<term>Genome, Plant</term>
<term>Nucleic Acid Conformation</term>
<term>Plant Development</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation d'acide nucléique</term>
<term>Croisements génétiques</term>
<term>Développement des plantes</term>
<term>Génome végétal</term>
<term>Séquence conservée</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>To date, several studies have indicated a major role for microRNAs (miRNAs) in regulating plant development, but miRNA-mediated regulation of the developing somatic embryo is poorly understood, especially during early stages of somatic embryogenesis in hardwood plants. In this study, Solexa sequencing and miRNA microfluidic chips were used to discover conserved and species-specific miRNAs during somatic embryogenesis of hybrid yellow poplar (Liriodendron tulipifera×L. chinense).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>A total of 17,214,153 reads representing 7,421,623 distinct sequences were obtained from a short RNA library generated from small RNAs extracted from all stages of somatic embryos. Through a combination of deep sequencing and bioinformatic analyses, we discovered 83 sequences with perfect matches to known miRNAs from 33 conserved miRNA families and 273 species-specific candidate miRNAs. MicroRNA microarray results demonstrated that many conserved and species-specific miRNAs were expressed in hybrid yellow poplar embryos. In addition, the microarray also detected another 149 potential miRNAs, belonging to 29 conserved families, which were not discovered by deep sequencing analysis. The biological processes and molecular functions of the targets of these miRNAs were predicted by carrying out BLAST search against Arabidopsis thaliana GenBank sequences and then analyzing the results with Gene Ontology.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Solexa sequencing and microarray hybridization were used to discover 232 candidate conserved miRNAs from 61 miRNA families and 273 candidate species-specific miRNAs in hybrid yellow poplar. In these predicted miRNAs, 64 conserved miRNAs and 177 species-specific miRNAs were detected by both sequencing and microarray hybridization. Our results suggest that miRNAs have wide-ranging characteristics and important roles during all stages of somatic embryogenesis in this economically important species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22952685</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>e43451</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0043451</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">To date, several studies have indicated a major role for microRNAs (miRNAs) in regulating plant development, but miRNA-mediated regulation of the developing somatic embryo is poorly understood, especially during early stages of somatic embryogenesis in hardwood plants. In this study, Solexa sequencing and miRNA microfluidic chips were used to discover conserved and species-specific miRNAs during somatic embryogenesis of hybrid yellow poplar (Liriodendron tulipifera×L. chinense).</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">A total of 17,214,153 reads representing 7,421,623 distinct sequences were obtained from a short RNA library generated from small RNAs extracted from all stages of somatic embryos. Through a combination of deep sequencing and bioinformatic analyses, we discovered 83 sequences with perfect matches to known miRNAs from 33 conserved miRNA families and 273 species-specific candidate miRNAs. MicroRNA microarray results demonstrated that many conserved and species-specific miRNAs were expressed in hybrid yellow poplar embryos. In addition, the microarray also detected another 149 potential miRNAs, belonging to 29 conserved families, which were not discovered by deep sequencing analysis. The biological processes and molecular functions of the targets of these miRNAs were predicted by carrying out BLAST search against Arabidopsis thaliana GenBank sequences and then analyzing the results with Gene Ontology.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Solexa sequencing and microarray hybridization were used to discover 232 candidate conserved miRNAs from 61 miRNA families and 273 candidate species-specific miRNAs in hybrid yellow poplar. In these predicted miRNAs, 64 conserved miRNAs and 177 species-specific miRNAs were detected by both sequencing and microarray hybridization. Our results suggest that miRNAs have wide-ranging characteristics and important roles during all stages of somatic embryogenesis in this economically important species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Tingting</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jinhui</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Shuai</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yanjuan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Pengkai</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Liwei</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Ye</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Jisen</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031567" MajorTopicYN="N">Liriodendron</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22952685</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0043451</ArticleId>
<ArticleId IdType="pii">PONE-D-12-02819</ArticleId>
<ArticleId IdType="pmc">PMC3430688</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 May 1;436(1-2):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19393185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Jul 13;11:431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Nov 27;33(20):e179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 23;110(4):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Mar;233(3):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21103993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Mar;9(3):277-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12592000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Dec 09;9:593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19068109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 26;443(7114):1008-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2002 Jul 17;3(1):19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12123529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Feb;22(2):321-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20173091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2007 Oct 12;3:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17931426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2006 Jan;63(2):246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16395542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Dec 1;24(23):2678-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21123653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1871-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21330492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jan 05;10:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 May;129(1):145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):669-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Mar;233(3):611-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21136073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Mar;24(3):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 4;133(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:19-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jan 8;140(1):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Sep 15;19(17):1485-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19646874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1658-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3610-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Feb;17(2):321-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12475896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Mar 11;263(5152):1421-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17776514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1750-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Feb;12(1):81-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18980858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Aug-Sep;46(8-9):739-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18603441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):439-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Feb 15;30(4):e15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2011 May 31;9:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21627854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 May 21;288(5):911-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Jan 10;11:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21219599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(2):243-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2005 Mar 30;5:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15799777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):2911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15217813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(12):e131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2012 May 10;499(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22425976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J RNAi Gene Silencing. 2005 Jul 28;1(1):44-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19771204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Apr;212(5-6):648-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11346938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jun 26;580(15):3753-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16780841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2005 May;15(5):336-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15916721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 15;20(24):3407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jun 15;26(12):1566-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20430753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D136-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Oct;18(10):1602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Manage. 2005 Jul;36(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132448</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
<name sortKey="Lu, Ye" sort="Lu, Ye" uniqKey="Lu Y" first="Ye" last="Lu">Ye Lu</name>
<name sortKey="Qiu, Shuai" sort="Qiu, Shuai" uniqKey="Qiu S" first="Shuai" last="Qiu">Shuai Qiu</name>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
<name sortKey="Wang, Pengkai" sort="Wang, Pengkai" uniqKey="Wang P" first="Pengkai" last="Wang">Pengkai Wang</name>
<name sortKey="Yang, Liwei" sort="Yang, Liwei" uniqKey="Yang L" first="Liwei" last="Yang">Liwei Yang</name>
<name sortKey="Zhang, Yanjuan" sort="Zhang, Yanjuan" uniqKey="Zhang Y" first="Yanjuan" last="Zhang">Yanjuan Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Li, Tingting" sort="Li, Tingting" uniqKey="Li T" first="Tingting" last="Li">Tingting Li</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22952685
   |texte=   Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22952685" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020